WilliamLam.com

  • About
    • About
    • Privacy
  • VMware Cloud Foundation
  • VKS
  • Homelab
    • Hardware Options
    • Hardware Reviews
    • Lab Deployment Scripts
    • Nested Virtualization
    • Homelab Podcasts
  • VMware Nostalgia
  • Apple

Getting started with VMware Pivotal Container Service (PKS) Part 1: Overview

03.23.2018 by William Lam // 17 Comments

This past week and half, I have been spending quite a bit of time familiarizing myself with the recently released VMware Pivotal Container Service solution, also referred to as VMware PKS for short (yes, that is a K not a C which is a nod to Google's container scheduler Kubernetes). VMware PKS is part of a project that I am currently working on and I figure I would share the process and steps I took to deploy VMware PKS in my own personal lab, in case other folks are interested in trying out this neat and powerful solution for deploying Cloud Native Apps using Kubernetes which was co-developed between VMware, Pivotal and Google.

If you would like to learn more about this first release of VMware PKS and the benefits it provides to both developers (consumers) and operators (admins/SRE) for Kubernetes infrastructure, check out this blog post here. Merlin Glynn, one of the Product Managers for PKS also did an awesome light board video overview of VMware PKS if you want the sparks notes version. If you simply want to give PKS a try without deploying anything, the CNA folks have also published a PKS HOL which can you find here. Another useful resource is the Getting Started with Kubernetes-as-a-Service post from Michael West who works in CNA team and built the PKS HOL.


This will be the first, in a series of articles outlining my VMware PKS deployment and configuration which hopefully can help benefit others as it took me several attempts while learning about the solution. Although the first few articles will include manual guidance, rest assure, there will be some cool automation towards the end but I figure that folks may want to go through this once by hand to get a good understanding on all the different components and how they interact with each other. Plus, some of the PKS-specific automation is still being worked on by the product team and hopefully I will be able to share some of that real soon.

If you missed any of the previous articles, you can find the complete list here:

  • Getting started with VMware Pivotal Container Service (PKS) Part 1: Overview
  • Getting started with VMware Pivotal Container Service (PKS) Part 2: PKS Client
  • Getting started with VMware Pivotal Container Service (PKS) Part 3: NSX-T
  • Getting started with VMware Pivotal Container Service (PKS) Part 4: Ops Manager & BOSH
  • Getting started with VMware Pivotal Container Service (PKS) Part 5: PKS Control Plane
  • Getting started with VMware Pivotal Container Service (PKS) Part 6: Kubernetes Go!
  • Getting started with VMware Pivotal Container Service (PKS) Part 7: Harbor
  • Getting started with VMware Pivotal Container Service (PKS) Part 8: Monitoring Tool Overview
  • Getting started with VMware Pivotal Container Service (PKS) Part 9: Logging
  • Getting started with VMware Pivotal Container Service (PKS) Part 10: Infrastructure Monitoring
  • Getting started with VMware Pivotal Container Service (PKS) Part 11: Application Monitoring
  • vGhetto Automated Pivotal Container Service (PKS) Lab Deployment

[Read more...]

Categories // Automation, Cloud Native, ESXi, Kubernetes, NSX, VSAN, vSphere Tags // BOSH, cloud native apps, Kubernetes, PCF, Pivotal, PKS

Verify Hypervisor-Assisted Guest Mitigation (Spectre) patches using PowerCLI

01.11.2018 by William Lam // 80 Comments

VMware recently published a new knowledge base (KB) article 52085 that outlines instructions for enabling the Hypervisor-Assisted Guest Mitigation (CVE-2017-5715), also known as the Spectre vulnerability. This KB also provides steps to verify the updated microcode (included in the ESXi patch) has been applied along with Virtual Machine verification (those applicable) to ensure that they are seeing the new CPU features. While following the KB and patching one of my vSphere environments, I had noticed the verification steps was not only manual but it also to difficult to scale beyond a few VMs as it required customers to look for a specific set of strings from within the vmware.log file which is generated for each powered on VM, which could easily be several hundreds or thousands of VMs.

I figured there had to be a better way to help customers automate this at scale and remove the human factor. The other reason I was not fond of the current method is that it would require customers to either enable ESXi Shell/SSH access or to manually or through automation to download every single vmware.log file to inspect for specific log entries which can take quite a bit of time for any sizable environment. I had an idea on how this could be done without having to look at the vmware.log file while leveraging our vSphere APIs and did some investigation. Before proceeding further, please familiarize yourself with KB 52085. For complete background on both Spectre (CVE-2017-5753 & CVE-2017-5715) and Meltdown (CVE-2017-5754) as it relates to all VMware products, please carefully read through this top level KB 52245 which is being updated as new information is available, so you may want to subscribe to the KB for all the latest updates.

UPDATE 4 (01/23/18) - VMware has just updated KB 52345 with the current list of Intel CPUs affected by Intel Sightings. I have also updated my script to reflect all these changes. Make sure to download the latest version to ensure you have the latest changes.

UPDATE 3 (01/16/18) - I have just enhanced the script further to also collect the current microcode version running on a given ESXi host. Unfortunately, this information can only be collected when SSH is enabled and is something a user must explicitly allow. The benefit here is that Intel Sighting impact reporting is more robust as the code now checks for both impacted CPU signature as well as the microcode affected by Intel Sighting as outline in KB 52345. See below for more details.

UPDATE 2 (01/14/18) - As mentioned in the last update, I have been working on a Intel Sighting remediation script which can help customers automate the temporary workaround as recommended in KB 52345. Please see this blog post for complete details.

UPDATE 1 (01/13/18) - VMware just published a new KB 52345 outlining certain Intel Broadwell and Haswell CPUs being affected by Intel Sightings after applying latest microcode updates. Please refer to the KB for the complete details. I am currently working on a script to help with the remediation as the remediation method outlined in the KB would require customers to enable SSH access and manually update /etc/vmware/config. In the meantime, I wanted to provide a way for customers to easily identify whether their system are affected by Intel Sightings and thanks to community member Adam Robinson who just submitted a patch this morning to update my existing script to include these details. I have also added the CPU model to the output as additional information.

Note: This script only provides information about your existing vSphere environment, it does not make any changes or provides any remediation steps, please follow the KB for those instructions.

The PowerCLI script is called VerifyESXiMicrocodePatch.ps1 and it contains the following two functions:

  • Verify-ESXiMicrocodePatchAndVM
  • Verify-ESXiMicrocodePatch

[Read more...]

Categories // Automation, ESXi, Security, vSphere Tags // cpuid.IBPB, cpuid.IBRS, cpuid.STIBP, Intel Sighting, microcode, plink, PowerCLI, Spectre, vsish

Identifying ESXi boot method & boot device

01.09.2018 by William Lam // 13 Comments

There was an interesting discussion on our internal Socialcast platform last week on figuring out how an ESXi host is booted up whether it is from local device like a disk or USB device, Auto Deploy or even boot from SAN along with its respective boot device? Although I had answered the question, I was not confident that we actually had a reliable and programmatic method for identifying all the different ESXi boot methods, which of course piqued my interest.

With a bit of trial and error in the lab, I believe I have found a method in which we can identify the ESXi boot type (Local, Stateless, Stateless Caching, Stateful or Boot from SAN) along with some additional details pertaining to the boot device. To demonstrate this, I have created the following PowerCLI script ESXiBootDevice.ps1 which contains a function called Get-ESXiBootDevice.

The function can be called without any parameters, in which it will query all ESXi hosts for a given vCenter Server and/or standalone ESXi host. You can also specify a specific ESXi host by simply passing in the -VMHostname option.

Here is an example output for one of my lab environments which shows several ESXi hosts and their different boot methods from local disk to Auto Deploy which can include stateless, stateless caching and stateful deployments. Depending on the BootType, the boot device shown in the Device column will either be the MAC Address of the NIC used to network boot the ESXi host or the identifier of a disk device. I have also included some additional details such as vendor/model along with the media type (SAS, SSD or USB) which is available as part of ESXCLI.


This script also supports ESXi environments that boot from SAN (FC, FCoE or iSCSI) and you can easily identify that with the word "remote" for the BootType. I would like to give a huge thanks to David Stamen who helped me out with the boot from SAN testing.

Categories // Automation, ESXi, PowerCLI, vSphere Tags // /UserVars/ImageCachedSystem, auto deploy, boot from SAN, ESXi, PowerCLI, stateful, stateless, stateless caching, vSphere API

  • « Previous Page
  • 1
  • …
  • 54
  • 55
  • 56
  • 57
  • 58
  • …
  • 109
  • Next Page »

Search

Thank Author

Author

William is Distinguished Platform Engineering Architect in the VMware Cloud Foundation (VCF) Division at Broadcom. His primary focus is helping customers and partners build, run and operate a modern Private Cloud using the VMware Cloud Foundation (VCF) platform.

Connect

  • Bluesky
  • Email
  • GitHub
  • LinkedIn
  • Mastodon
  • Reddit
  • RSS
  • Twitter
  • Vimeo

Recent

  • Ultimate Lab Resource for VCF 9.0 06/25/2025
  • VMware Cloud Foundation (VCF) on ASUS NUC 15 Pro (Cyber Canyon) 06/25/2025
  • VMware Cloud Foundation (VCF) on Minisforum MS-A2 06/25/2025
  • VCF 9.0 Offline Depot using Synology 06/25/2025
  • Deploying VCF 9.0 on a single ESXi host? 06/24/2025

Advertisment

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy

Copyright WilliamLam.com © 2025

 

Loading Comments...